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An Extended Newton’'s Method with Free
Second-order Derivatives

Young Hee Geum, Young Ik Kim

Abstract—\We propose the cubic-order numerical method free oBy Corollary 1 and Corollary 2, we ha\{é(z)]gl)a =0,0<
second derivatives and derive the asymptotic error constant in termis< m, — 1 and fla) = fl(a) = - = f(mfl)(a) =
of control parameters. Applying this proposed scheme to various tgst f(m) # 0. Using L'Hospital’'s rule repeatedly[5,6,9], we
functions, numerical results show a good agreement with the the?g ey

analyzed in this paper and are proven using Mathematica with ve (m—1)
high-precision computability. lim F(z) = [f(2)]z=a —0 (©)
Keywords—second-derivative-free, order of convergence, asymp- T [ ()] (m=1)
totic error constant, iterative method , multiple root, root-finding The next corollary is useful to calculatg(a), ¢”(a) and
"
9" ().

1. INTRODUCTION Corollary 1: Supposef : C — C has a multiple root with

a given integer multiplicityn > 1 and is analytic in a small
HE The iteration methods to find the roots of nonlineareighborhood ofv. Then the functiorh(x) and its derivatives
equations have various applications in many scienag to order 3 evaluated at has the following properties with
problems. Among them, the Newton's method is one of thge — %’j ceN:
most well-known iteration schemes and is modified by many (i) h’&a) (i)()
researchers[1]-[4].
Assume that a functiorf : C — C has a multiple root (i) 7' () = L
« with integer multiplicitym > 1 and is analytic in a small
neighborhood ofv. We express the given equatigiiz) = 0 (iii) h"'(a) = ——2—6;
in the formz — g(z) = 0 whereg : C — C is analytic m?(m+1)

in a sufficiently small neighborhood ef. Then We find an S 13 — 6 2 _ 2m
approximatedy by a scheme (W) 17(e) = gy (01— ity
bp y Corollary 2: Let f stated in Corollary 1 have a multiple
Tpi1=g(xn), n=0,1, 2,---, (1) roota with a given multiplicitym > 1. Let z2(x) = x— ph(x)

and h(z) be defined by (3). Then the following hold:
whereg : C — C is an iteration function and, € C is given.

dk
Then we find an approximatedusing an iterative method[5]-  dz* f(z)
[8]. The roots of the equation are obtained using the following

r=«

scheme: 0,( : if0<k<m-—1
Ty — ph(Tn _ ) U (aym, if k=m
9(@n) —xn—)\% (2) T fM(a) 6t A —t+42), ifk=m+1
Tn O () 4m=2  {q16F + qoba},  if k=m+2
where h MDA 1)2{2(m + 1)t 1}
, . where q1 = 5oy (t — m+ )t —m+ 1y, @2 =
h(z) = { {(x)/f Sfx()’)/f’( ) ,fo xzé @ (3) t(t>—2t+2)andt’ =1 foranyt e C.
Hhz—a JIF A weE=o In this paper, our aim is to establish some relationships
For a givenp € N, we suppose that between\, m, ¢'(a), ¢’'(«) and ¢"’(«) for cubic order of

convergence[8,9] and derive the corresponding asymptotic
(4) error constant. Various numerical experiments are presented
to confirm the validity of the suggested method.

Hrg@)| =g (@l <1, ifp=1.

{ gD (a)=0for1 <i<p—1andg®(a)#£0,ifp>2.

Let z(z) = x — ph(z) and F(x) = m%(g)(m)) Since g(x)

is continuous at: = «, g(x) is represented by 2 . CONVERGENCEANALYSIS
g(m):{ i:iiﬁgﬂ P), ;jf;jaa (5) We analyze the convergent properties of this proposed

scheme (2) and investigate the order of convergence and the

Young Hee Geum was supported by the National Research Foundafymptotic error constant[10] in terms of parameteand /..
of Korea funded by the Ministry of Education, Science and Technologyrom the definition ofy(x) as described in (2), we rewrite
(Project No. 2011-0014638). Young Hee Geum is with the Department of
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where f = f(z), f = f'(x),z = x — ph(x) are used for We rewrite
concise and the symboéldenotes the derivative with respect

2 .
to . 9P (@) = { o) Fy(x) ilff MESAT)
Differentiating both sides of (7) with respect 49 we obtain e ’ ’
where
(6 =1) ' +(g—a)- (@) = =MD (3 S o
. . . Fo(e) = 234"~ 30 — DS — (g —a) P - Af(2)]® (20)

Sinceg’ is continuous atv, we have 3 Iz :

g T\ limg—o Fi(z), if z=aq Using Corollary 2 and the fact thaj(a) = a,¢P(a) =

where Fy (z) = *(gfﬂf”(?ﬂ[f(z)](“ _
Using Corollary 2 andj(«) = a, we have the following:

(g —2)f" (@),
0, if0<k<m-—2m2>2
{ (m=1)(¢' = 1) f")(a), if k=m—1, (10)
(k)
i 0 <k<m-2,m>2
Substituting (10) and (11) into (9) leads
g'(@) —1=—(m—-1)(g'(a) 1) = A(1 - %)m
To obtaing’(a) = 0, we get
m = A" (12)

wheret =1 — £
Differentiate both sides of Eq(8) with respectipwe have

9" 29 =1)- [+ (g—2) fO = =Af(2)P (13)
We rewrite
" . F2(x)a if x 7£ o
g'(@) = { limg o Fa(x), if T=aq, (14)
where Fp(z) = =260 ~(g= ) J O A I
Applying L'Hospital’s rule Wltffl Corollary 2, the numerator of
Fy(x) yields
=2(g' = 1)f" = (g~ 2)f® = A[f(2)]?
FO (@) (m — At™), if k=m—2
Fr @0 (m + 1) =A™ — ¢ )
—g" () 2], if k=m—1,
(15)
From (14) and (15), we obtain
"o 291 _ m+1 _ ym m—1
g —7m(m+1){(m+1) At "+t )} (16)

From (16), to havg)’(«) = 0 we get the following relation,

m41=\t"T — ™ gt (17)

Differentiate both sides of (13) with respecttowe get

L R R A T L D A S I Al PN £ 165 ) P €
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0,¢"(a)) = 0 for cubic order of convergence, we have the
relation below:

|:_3g//'f//_3(g/_

|

where

(k)

r=«

1) fO(g—a)- fO = A[f(2)]®

0, ifO<k<m-—4
£ (@) (m — xe™), ifk=m—3
01 £ (@) {m 4+ 1 — AL e 4 pm g ifk=m—2

2
f(m) (Q){¢191 + oo — ﬁm_*l)iw)_g@)}, ifk=m—1,

-
|

(21)

tm=2qy(t, if m>2
3t—1)% if m=1,

m+2—\""2 . ga(t), if m>2
—t(t? = 3), if m=1,

@1 = A (4 1) {2(m + 1)t —m + 1} andgz = (5 —
2t +1).
From (19) and (21), we have
6
(3) _ 2
9o = e T (o el (22)

Theorem 1:Let f : C — C have a multiple real zera
with integer multiplicitym > 1 and be analytic in a small
neighborhood ofv. Let ,, 6, be defined as in Corollary and
o1, 2 be defined as in (21). Letbe a root ofR(¢). Let xq
be an initial value chosen in a sufficiently small neighborhood
of a. Then this proposed method stated in section 1 has order
3 and its asymptotic error constantas follows:

1 1
— 519 =

m(m+1)(m+2)
provided thatp, 07 + ¢o0y # 0.
From (12) and (17), we get

9167 + $202],

(23)

mt* — (2m+ Dt +m =0

Typical cases forl < m < 4 are studied here and listed in
Table 1 to confirm Theorem 2.1.

TABLE |
VALUES p AND FOR1 <m < 4

p(t) n
t2 —3t+1=0 %[ (4—3t)+29f(17t)]
2t2 _5t4+2=0 5t2 +2t+4 + 03 7t2 —2t42,

'§t2

(02
362 _ 764 3=0 (62 —7¢2 +2t+r 4502 AL LESLIYIES
(92

N N E

::|H ::|H »4>|"‘

3 2
2 _ 10t—8 230t3 —49¢2 428t —9
4t 9t +4 =0 —= + 67 =2 ]
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TABLE 1lI
CONVERGENCE FORf (z) = (z — 7)) log?(z + 1 — @) sin® z - €* WITH
m=8 a=m

3. NUMERICAL RESULTS

The symbolic and computational ability Mfathematicfl 1] -
leads us to a zero-finding algorithm based on the convergent (t,n,A) = (S5, —3.37228,0.479765623518)
behaviour studied in Sections 1 and 2.

Tn | on — o 5n+1/5n3

TOL 3.29000000000000 0.148407 ;’.1272715659
Algorithm 3.1 (Zero-Finding Algorithm) A
10— 11
A ) i 3 3.14159265358979 >1< 04017 0.1272715660
Step 1 Fork € N U {0}, construct iteration scheme (1) with x10—33
. . . . . 4 3.14159265358979 1.43232 0.1272715659
the given functionf at a multiple zeron as stated in Section x10~100
5 3.14159265358979 0.
1. «10—299
Step 2 Set the minimum number of precision digits. With
exact zeroa or most accurate zero, supply the theoretical TABLE IV
asymptotic error constant Set the error range, the maxi- CONVERGENCE FOR VARIOUS TEST FUNCTIONS
mum iteration number,,,,, and the initial valuer,. Compute i
f(x) m Zo en v n
f(wo) and[zg —a |. _ fi(x) || 1 [ 0490 | 6.13024x 10 2> | 5 | 0.04875502284
Step 3 Computex,, 1 in (1) for 0 < n < n,,. and display fa(x) || 2 | 1.290 | 4.51173 @},07253 8 | 0.7835709502
_ p fa(x) 3 1.080 | 0. x 10~ =% 10 | 5.119146433
the computed values ofn, zn, f(zn). [2n — al, |ent1/en”| fa(z) 4 | 2190 | 1.18904 x 10726 | 8 | 05369302217
andn. fs(z) || 5 | 2270 | 2.41280x 1073 | 9 | 1.11
. L. fo(x 6 | 2790 | 2.52653 x 1073%9 | 9 1.096153846
In these experiments, we choo¥#) as the minimum number jjﬁgg 7 | 2500 | 1.92369 x 10587 | 10 | 3.591527519
of digits of precision by assigningMinPrecision=300in fs(z) || 8 | 1.590 | 1.90760 x 107°°° | 8 | 0.08249684013

Mathematica to achieve the specified accuracy. We set the error
bounde t0 0.5 x 107235 for | z,, —a | < € and evaluate the!”?
order derivative of the complicated nonlinear functions using Our analysis has been further confirmed through more test
the Mathematica commarid[f, {x,n}]. functions that are listed below:
As an example for the convergence, we first illustrate the fi(x) = cosx — z, a0 = 0.739085133215161
order of convergence and the asymptotic error constant with  f,(x) = (sin® z — 2% 4 1)(cos 2z 4 222 — 3),

a function a = 1.40449164821534
—( .4 2 0\2
@) = (2 — 2+ 3)*/(z* + sinz) __ )= (einlne/ 2v2) -2t +3)(2* - 2)%,
having a real zerax = % of multiplicity 4. We choose fa(x) = (28 — ldatsin(rz/4) — 32)(z? — 4z +
zo = 0.468 — 1.58: as an initial guess. Table 2 verifies cubiel) log(x — 1), @ = 2.00000000000000
convergence apparently. f5(x) = (327 — 372* + 208) sin (7 /2) log[z — 1]3,

o = 2.00000000000000

TABLE II — (o(@®+T2-30) _ _ ) gint
CONVERGENCE FORf(z) = (22 — z + 3)*/(z* + sinz) WITH foz) = (e (2 = 3)sin® mz/3,
RN I Vv a = 3.00000000000001
) 2 _ .
@) = (e tsing 4 logll + (@ — 7P -
; _ 2, —
(., N) = (2847, 2.56155,1) m)sin”z(loglz — 7 + 1), a =7 o
T fs(@) = (a?sin(mz/8) + D" — 1 - 2/2)(z —

R B v BT B e 2)3sin? (72/2), o = 2.00000000000000

- 1.58000000000000i
1 0.500178290031692 0.000181560 0.2998740289

- 1.65834669787011i .
2 |[0500000000001344 | 1.52868 | 02554204016 Table 4 shows convergence behavior for the above test

- 1.65831239517843i | x 1012 . . Lo L
3 ][ 0.500000000000000 | 9.12388 | 0.2554068175 functions with the multiplicitym, the initial guess, the least

i —37 . . .

B | o LLELE TR N iteration numbew and the asymptotic error constaptin the

- 165831239517770i | x10 109 future study, we develop extended optimal iteration methods
5 0.500000000000000 0.0 N

- 1.65831239517770i | x 10299 of hlgher order.

The current study can be applied to the effiective variations
to develop the higher order numerical schemes to find the

; ; _ 2
We choose an analytic functiof(z) = (z — m)log™(z + multiple roots of nonlinear equations[12]-[14].

1 — 7)sin® z - * near a multiple rootx = 7 of multiplicity
8. The extra informations regarding cubic convergence are ACKNOWLEDGMENT
used as a initial valuers, = 3.29, x = —3.37228 and
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