
An Extended Newton’s Method with Free
Second-order Derivatives

Young Hee Geum, Young Ik Kim

Abstract—We propose the cubic-order numerical method free of
second derivatives and derive the asymptotic error constant in terms
of control parameters. Applying this proposed scheme to various test
functions, numerical results show a good agreement with the theory
analyzed in this paper and are proven using Mathematica with its
high-precision computability.
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1 . INTRODUCTION

THE The iteration methods to find the roots of nonlinear
equations have various applications in many science

problems. Among them, the Newton’s method is one of the
most well-known iteration schemes and is modified by many
researchers[1]-[4].

Assume that a functionf : C → C has a multiple root
α with integer multiplicitym ≥ 1 and is analytic in a small
neighborhood ofα. We express the given equationf(x) = 0
in the form x − g(x) = 0 where g : C → C is analytic
in a sufficiently small neighborhood ofα. Then We find an
approximatedα by a scheme

xn+1 = g(xn), n = 0, 1, 2, · · · , (1)

whereg : C → C is an iteration function andx0 ∈ C is given.
Then we find an approximatedα using an iterative method[5]-
[8]. The roots of the equation are obtained using the following
scheme:

g(xn) = xn − λ
f(xn − µh(xn))

f ′(xn)
(2)

where

h(x) =

{

f(x)/f ′(x), if x 6= α
limx→α f(x)/f ′(x), if x = α.

(3)

For a givenp ∈ N, we suppose that
{

∣

∣

∣

dp

dxp g(x)
∣

∣

∣

x=α
= |g(p)(α)| < 1, if p = 1.

g(i)(α) = 0 for 1 ≤ i ≤ p − 1 and g(p)(α) 6= 0, if p ≥ 2.
(4)

Let z(x) = x − µh(x) and F (x) = f(x−µh(x))
f ′(x)

. Sinceg(x)

is continuous atx = α, g(x) is represented by

g(x) =

{

x − λF (x), if x 6= α

x − λ limx→α F (x), if x = α.
(5)
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By Corollary 1 and Corollary 2, we have[f(z)]
(k)
x=α = 0, 0 ≤

k ≤ m − 1 and f(α) = f ′(α) = · · · = f(m−1)(α) =
0, f(m) 6= 0. Using L’Hospital’s rule repeatedly[5,6,9], we
have

lim
x→α

F (x) =
[f(z)]

(m−1)
x=α

[f ′(x)](m−1)
= 0 (6)

The next corollary is useful to calculateg′(α), g′′(α) and
g′′′(α).

Corollary 1: Supposef : C → C has a multiple rootα with
a given integer multiplicitym ≥ 1 and is analytic in a small
neighborhood ofα. Then the functionh(x) and its derivatives
up to order 3 evaluated atα has the following properties with

θj = f(m+j)(α)
f(m)(α)

, j ∈ N:
(i) h(α) = 0

(ii) h′(α) = 1
m

(iii) h′′(α) = − 2
m2(m+1)θ1

(iv) h(3)(α) = 6
m3(m+1)

{

θ1
2 − 2m

m+2
θ2

}

.

Corollary 2: Let f stated in Corollary 1 have a multiple
root α with a given multiplicitym ≥ 1. Let z(x) = x−µh(x)
andh(x) be defined by (3). Then the following hold:

dk

dxk f(z)

∣

∣

∣

∣

x=α

=







0, if 0 ≤ k ≤ m − 1
f (m)(α)tm, if k = m

f (m)(α) · θ1 · tm−1(1 − t + t2), if k = m + 1
f (m)(α) · tm−2 · {q1θ2

1 + q2θ2}, if k = m + 2

where q1 =
(m+2)λ

2m(m+1) (t − 1)2{2(m + 1)t − m + 1}, q2 =

t(t3 − 2t + 2) and t0 ≡ 1 for any t ∈ C.
In this paper, our aim is to establish some relationships

betweenλ, m, g′(α), g′′(α) and g′′′(α) for cubic order of
convergence[8,9] and derive the corresponding asymptotic
error constant. Various numerical experiments are presented
to confirm the validity of the suggested method.

2 . CONVERGENCEANALYSIS

We analyze the convergent properties of this proposed
scheme (2) and investigate the order of convergence and the
asymptotic error constant[10] in terms of parameterλ andµ.
From the definition ofg(x) as described in (2), we rewrite

(g − x) · f ′(x) = −λf(z). (7)
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where f = f(x), f ′ = f ′(x), z = x − µh(x) are used for
concise and the symbol′ denotes the derivative with respect
to x.
Differentiating both sides of (7) with respect tox, we obtain

(g′ − 1) · f ′ + (g − x) · f ′′(x) = −λ[f(z)](1) (8)

Sinceg′ is continuous atα, we have

g′(x) − 1 =

{

F1(x), if x 6= α
limx→α F1(x), if x = α,

(9)

whereF1(x) = −(g−x)f ′′(x)−λ[f(z)](1)

f ′ .
Using Corollary 2 andg(α) = α, we have the following:

(g − x)f ′′(x)](k)
x=α

=

{

0, if 0 ≤ k ≤ m − 2, m ≥ 2

(m − 1)(g′ − 1)f (m)(α), if k = m − 1,
(10)

[f(z)](1)

](k)

x=α

=

{

0, if 0 ≤ k ≤ m − 2, m ≥ 2
f (m)(α)(1− µ

m
)m, if k = m − 1,

(11)

Substituting (10) and (11) into (9) leads

g′(α) − 1 = −(m − 1)(g′(α) − 1) − λ(1 − µ

m
)m

To obtaing′(α) = 0, we get

m = λtm (12)

wheret = 1 − µ
m

.
Differentiate both sides of Eq(8) with respect tox, we have

g′′ + 2(g′ − 1) · f ′′ + (g − x) · f(3) = −λ[f(z)](2) (13)

We rewrite

g′′(x) =

{

F2(x), if x 6= α
limx→α F2(x), if x = α,

(14)

whereF2(x) = −2(g′−1)·f ′′−(g−x)·f(3)−λ[f(z)](2)

f ′ .
Applying L’Hospital’s rule with Corollary 2, the numerator of
F2(x) yields

−2(g′ − 1)f ′′ − (g − x)f(3) − λ[f(z)](2)

=















0, if 0 ≤ k ≤ m − 3

f(m)(α)(m − λtm), if k = m − 2

f(m)(α)[θ1{(m + 1) − λ(tm+1 − tm + tm−1)}
−g′′(α) (m+2)(m−1)

2
], if k = m − 1,

(15)
From (14) and (15), we obtain

g′′ =
2θ1

m(m + 1)
{(m + 1) − λ(tm+1 − tm + tm−1)} (16)

From (16), to haveg′′(α) = 0 we get the following relation,

m + 1 = λ(tm+1 − tm + tm−1) (17)

Differentiate both sides of (13) with respect tox, we get

g(3) · f′ + 3g′′ · f′′ + 3(g′ − 1) · f(3) + (g − x) · f(4) = −λ[f(z)](3) . (18)

We rewrite

g(3)(x) =

{

F3(x), if x 6= α
limx→α F3(x), if x = α,

(19)

where

F3(x) =
−3g′′f ′′ − 3(g′ − 1)f(3) − (g − x)f(4) − λ[f(z)](3)

f ′
. (20)

Using Corollary 2 and the fact thatg(α) = α, gP(α) =
0, g′′(α) = 0 for cubic order of convergence, we have the
relation below:
[

− 3g′′ · f ′′ − 3(g′ − 1) · f(3)(g − x) · f(4) − λ[f(z)](3)
](k)

x=α

=























0, if 0 ≤ k ≤ m − 4

f(m) (α)(m − λtm), if k = m − 3

θ1f(m) (α){m + 1 − λ(tm+1 − tm + tm−1)}, if k = m − 2

f(m) (α){φ1θ2
1 + φ2θ2 −

(m−1)(m2+4m+6)
6

g(3)}, if k = m − 1,

(21)

where

φ1 =

{

tm−2q1(t, if m ≥ 2
3(t − 1)2, if m = 1,

φ2 =

{

m + 2 − λtm−2 · q2(t), if m ≥ 2
−t(t2 − 3), if m = 1,

q1 = (m+2)λ
2m(m+1) (t − 1)2{2(m + 1)t − m + 1} andq2 = t(t3 −

2t + 1).
From (19) and (21), we have

g(3)(α) =
6

m(m + 1)(m + 2)
{φ1θ

2
1 + φ2θ2}. (22)

Theorem 1:Let f : C → C have a multiple real zeroα
with integer multiplicitym ≥ 1 and be analytic in a small
neighborhood ofα. Let θ1, θ2 be defined as in Corollary and
φ1, φ2 be defined as in (21). Lett be a root ofR(t). Let x0

be an initial value chosen in a sufficiently small neighborhood
of α. Then this proposed method stated in section 1 has order
3 and its asymptotic error constantη as follows:

η =
1

6
|g(3)(α)| =

1

m(m + 1)(m + 2)
|φ1θ

2
1 + φ2θ2|, (23)

provided thatφ1θ
2
1 + φ2θ2 6= 0.

From (12) and (17), we get

mt2 − (2m + 1)t + m = 0

Typical cases for1 ≤ m ≤ 4 are studied here and listed in
Table 1 to confirm Theorem 2.1.

TABLE I
VALUES ρ AND η FOR1 ≤ m ≤ 4

m ρ(t) η

1 t2 − 3t + 1 = 0 1
6
[θ2(4 − 3t) + 2θ2

1(1 − t)]

2 2t2 − 5t + 2 = 0 1
24

[θ2
5t2+2t+4

t
+ θ2

1
7t2−2t+2

3t2
]

3 3t2 − 7t + 3 = 0 1
60

[θ2
−7t2+2t+6

t
+ 5θ2

1
4t3+t2−6t+1

4t2
]

4 4t2 − 9t + 4 = 0 1
20

[θ2
10t−8

t
+ θ2

1
30t3−49t2+28t−9

5t2
]
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3 . NUMERICAL RESULTS

The symbolic and computational ability ofMathematica[11]
leads us to a zero-finding algorithm based on the convergent
behaviour studied in Sections 1 and 2.

Algorithm 3.1 (Zero-Finding Algorithm)

Step 1. For k ∈ N ∪ {0}, construct iteration scheme (1) with
the given functionf at a multiple zeroα as stated in Section
1.
Step 2. Set the minimum number of precision digits. With
exact zeroα or most accurate zero, supply the theoretical
asymptotic error constantη. Set the error rangeǫ, the maxi-
mum iteration numbernmax and the initial valuex0. Compute
f(x0) and |x0 − α |.
Step 3. Computexn+1 in (1) for 0 ≤ n ≤ nmax and display
the computed values ofn, xn, f(xn), |xn − α|, |en+1/en

p|
andη.

In these experiments, we choose300 as the minimum number
of digits of precision by assigning$MinPrecision=300 in
Mathematica to achieve the specified accuracy. We set the error
boundǫ to 0.5×10−235 for | xn−α | < ǫ and evaluate thenth

order derivative of the complicated nonlinear functions using
the Mathematica commandD[f, {x, n}].

As an example for the convergence, we first illustrate the
order of convergence and the asymptotic error constant with
a function

f(x) = (x2 − x + 3)4/(x4 + sin x)

having a real zeroα = 1−i
√

11
2

of multiplicity 4. We choose
x0 = 0.468− 1.58i as an initial guess. Table 2 verifies cubic
convergence apparently.

TABLE II
CONVERGENCE FORf(x) = (x2 − x + 3)4/(x4 + sin x) WITH

m = 4, α = 1−i
√

11
2

(t, µ, λ) = ( 9+
√

17
8

,−2.56155,1)

n xn | xn − α | en+1/en
3 η

0 0.468000000000000 0.0845981 0.2554068175
- 1.58000000000000i

1 0.500178290031692 0.000181560 0.2998740289
- 1.65834669787011i

2 0.500000000001344 1.52868 0.2554204016

- 1.65831239517843i ×10−12

3 0.500000000000000 9.12388 0.2554068175

- 1.65831239517770i ×10−37

4 0.500000000000000 1.93986 0.2554068175

- 1.65831239517770i ×10−109

5 0.500000000000000 0.0

- 1.65831239517770i ×10−299

We choose an analytic functionf(x) = (x − π) log2(x +
1 − π) sin5 x · ex near a multiple rootα = π of multiplicity
8. The extra informations regarding cubic convergence are
used as a initial valuex0 = 3.29, µ = −3.37228 and
λ = 0.479765623518. We select a complext = 17+

√
33

16 that is
approximated as one of2 solutions to a polynomial equation
ρ(t) numerically. From the lists of Table 3, it can be confirmed
that the computed asymptotic error constant coincides with the
investigated one using Theorem 2 and this iteration method has
cubic convergence.

TABLE III
CONVERGENCE FORf(x) = (x − π) log2(x + 1 − π) sin5 x · ex WITH

m = 8, α = π

(t, µ, λ) = ( 17+
√

33
16

,−3.37228,0.479765623518)

n xn | xn − α | en+1/en
3 η

0 3.29000000000000 0.148407 0.1272715659
1 3.14213337664892 0.000540723 0.1654278750
2 3.14159265360994 2.01430 0.1274087393

×10−11

3 3.14159265358979 1.04017 0.1272715660

×10−33

4 3.14159265358979 1.43232 0.1272715659

×10−100

5 3.14159265358979 0.

×10−299

TABLE IV
CONVERGENCE FOR VARIOUS TEST FUNCTIONS.

f(x) m x0 en ν η

f1(x) 1 0.490 6.13024× 10−293 5 0.04875502284
f2(x) 2 1.290 4.51173× 10−253 8 0.7835709502
f3(x) 3 1.080 0. × 10−249 10 5.119146433
f4(x) 4 2.190 1.18904× 10−261 8 0.5369302217
f5(x) 5 2.270 2.41280× 10−398 9 1.11
f6(x) 6 2.790 2.52653× 10−359 9 1.096153846
f7(x) 7 2.590 1.92369× 10−587 10 3.591527519
f8(x) 8 1.590 1.90760× 10−308 8 0.08249684013

Our analysis has been further confirmed through more test
functions that are listed below:

f1(x) = cosx − x, α = 0.739085133215161
f2(x) = (sin2 x − x2 + 1)(cos 2x + 2x2 − 3),

α = 1.40449164821534
f3(x) = (sin(πx/2

√
2) − x4 + 3)(x2 − 2)2,

α =
√

2
f4(x) = (x8 − 14x4 sin(πx/4) − 32)(x2 − 4x +

4) log(x − 1), α = 2.00000000000000
f5(x) = (3x7 − 37x4 + 208) sin (πx/2) log[x− 1]3,

α = 2.00000000000000
f6(x) = (e(x2+7x−30) − 1)(x − 3) sin4 πx/3,

α = 3.00000000000001
f7(x) = (e−x sin x + log[1 + (x − π)2])(x −

π) sin3 x(log[x − π + 1])2, α = π
f8(x) = (x2 sin (πx/8) + e(x−2)2 − 1 − 2

√
2)(x −

2)3 sin4 (πx/2), α = 2.00000000000000

Table 4 shows convergence behavior for the above test
functions with the multiplicitym, the initial guessx0, the least
iteration numberν and the asymptotic error constantη. In the
future study, we develop extended optimal iteration methods
of higher order.

The current study can be applied to the effiective variations
to develop the higher order numerical schemes to find the
multiple roots of nonlinear equations[12]-[14].
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